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Why GPUs?

GPUs offer much higher instruction throughput and memory 
bandwidth than CPUs within a similar price and power 
envelope, making them ideal for applications that require high 
parallelism. Unlike CPUs, which excel at executing a few threads 
sequentially, GPUs are designed to handle thousands of 
threads simultaneously, achieving greater throughput by 
focusing more on data processing rather than data caching and 
flow control.



Input: an array, Output: squared



Programming Assignment #1

•

•

CUDA_for_ITU/assignments/01-CPU_GPU_difference at main · ehsanyousefzadehasl/CUDA_for_ITU

Number of elements in the input array CPU Time GPU Time

https://github.com/ehsanyousefzadehasl/CUDA_for_ITU/tree/main/assignments/01-CPU_GPU_difference
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Heterogeneous Computing
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Heterogeneous Computing

#include <iostream>

#include <algorithm>

using namespace std;

#define N          1024

#define RADIUS     3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out;              // host copies of a, b, c

int *d_in, *d_out;          // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in,  size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn



Simple Processing Flow

PCI Bus



Simple Processing Flow
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Hello World!

• ($nvcc

•

int main(void) {

printf("Hello World!\n");

return 0;

}

$ nvcc 00-hello_world.cu –o 00-hello_world



Hello World!

__global__ void helloWorld(void) {

printf("Hello from thread %d from block %d\n", 

threadIdx.x, blockIdx.x);

}

int main(void) {

mykernel<<<10,100>>>();

return 0;

}



Hello World! with Device Code

• __global__ 

•

•

• nvcc

• helloWorld()

• main()



Hello World! with Device Code

helloWorld<<<1,1>>>();
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Adding two Arrays
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CPU SIMD Instructions
SIMD (Single Instruction, Multiple Data) Instructions: SIMD is a type of 
parallel processing in CPUs where a single instruction is executed 
simultaneously on multiple pieces of data. This is particularly useful for 
operations like vector and matrix computations, image processing, or any 
tasks that involve performing the same operation on large datasets. In SIMD, 
data is stored in vectors (arrays of elements), and special SIMD registers 
process multiple elements in parallel. For example, a CPU with 256-bit SIMD 
registers can process eight 32-bit numbers or sixteen 16-bit numbers at once. 
This allows significant performance improvements by leveraging data-level 
parallelism. Modern CPUs provide SIMD extensions like Intel’s SSE and 
AVX, or ARM’s NEON, which are designed to optimize workloads in fields like 
scientific computing, multimedia processing, and machine learning. SIMD 
helps CPUs handle tasks that require high throughput, enabling faster 
computations compared to processing data sequentially.



Adding two Arrays

•
•

a b c



Terminology 

CUDA C++ Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/


The logic behind the add we checked!

• add<<<4, 8>>>(A, B, C, N)

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

0 + 0 * 8 6 + 1 * 8 = 14 7 + 3 * 8 = 31

int index = threadIdx.x + blockIdx.x * blockDim.x;



Basic device (GPU) memory management
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Parallel Communication Patterns

• Parallel computing is about many threads solving a problem by working 
together. The key to working together is communication. In CUDA, 
communication takes place through memory.

• There are different kinds of parallel communication patterns and they 
are about how to map tasks (threads) and memory.

• Some of the important patterns: map, gather, scatter, stencil, transpose



Map



Map 

• The map parallel pattern is a fundamental concept in parallel 
programming where the same operation is independently applied to 
every element of a dataset. It is an embarrassingly parallel pattern, 
meaning there are no dependencies between elements, so all operations 
can be executed in parallel without requiring communication between 
threads. 

• In CUDA programming, the map pattern is often implemented by 
assigning one thread to process one or more elements of the dataset. 
The map pattern is particularly efficient because it allows maximum 
utilization of GPU cores by distributing work evenly across threads.



Applications of Map
• Image Processing: Applying filters (e.g., grayscale conversion, 

brightness adjustment) where each pixel can be processed 
independently.

• Scientific Simulations: Computing mathematical functions (e.g., sine, 
cosine, or exponential) for large arrays of input values.

• Data Transformation: Converting or normalizing datasets, such as 
scaling numerical values or applying logarithmic transformations.

• Graphics Rendering: Transforming vertex coordinates or applying 
color transformations in GPU-accelerated graphics.

• Machine Learning: Element-wise activation functions (e.g., ReLU, 
sigmoid) applied to neural network layers.

The map pattern's simplicity and lack of inter-thread communication 
make it a highly efficient and scalable approach for parallelizing 
independent computations.



Gather



Gather

The gather parallel pattern is a common approach in parallel 
programming where data is collected from multiple memory locations 
into a single output dataset. Each thread retrieves data from one or 
more indices of the input dataset and performs operations to produce its 
corresponding result. Unlike the map pattern, the gather pattern often 
involves non-contiguous memory accesses, as threads may need to 
access scattered input locations. In CUDA, implementing an efficient 
gather pattern requires careful memory management to minimize 
uncoalesced global memory access.



Applications of Gather

The gather pattern is frequently used in tasks where specific data needs to be extracted 
or rearranged:

1.Matrix Operations: Extracting rows, columns, or specific elements for sub-matrix 
computations.

2.Image Processing: Sampling data from scattered pixel locations (e.g., texture 
mapping, image warping).

3.Scientific Simulations: Collecting data points from irregular grids or domains for 
further processing.

4.Data Rearrangement: Reorganizing datasets (e.g., shuffling, grouping, or sorting by 
specific criteria).

5.Graphics and Rendering: Gathering vertex or texture data for 3D transformations or 
rendering pipelines.

The gather pattern's flexibility makes it ideal for handling irregular or scattered datasets, 
though optimizing memory access patterns is crucial to achieve high performance on 
GPUs.



Reduce

Common Parallel Patterns | SpringerLink

https://link.springer.com/chapter/10.1007/978-1-4842-5574-2_14#:~:text=A%20reduction%20is%20a%20common,commutative%20(e.g.%2C%20addition).


Reduce

The reduce parallel pattern involves combining elements of a 
dataset into a single result using a specified operation, such as 
summation, multiplication, or finding the maximum. In CUDA, this pattern 
is typically implemented by assigning threads to process parts of the 
dataset and then performing a hierarchical reduction in shared 
memory, where partial results are iteratively combined until only one 
result remains. Reduction is a key pattern in parallel programming as it 
efficiently aggregates data while minimizing global memory accesses.



Applications of Reduce

1.Scientific Simulations: Summing physical quantities (e.g., energy, mass) or 
calculating averages over large datasets.

2.Data Analytics: Computing metrics like totals, maximums, minimums, or 
variance across datasets.

3.Machine Learning: Summing gradients during backpropagation or 
aggregating results in distributed computations.

4.Graphics: Calculating light intensity or pixel averages in rendering pipelines.

5.Financial Modeling: Aggregating transaction data for totals or risk analysis.

The reduce pattern is essential for summarizing large datasets efficiently, with 
shared memory and synchronization ensuring optimal performance on GPUs.



Scatter
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•

•



Scatter

The scatter parallel pattern distributes data from a single input dataset 
to specific locations in an output dataset. Each thread takes a portion 
of the input and writes it to one or more indices in the output, often based 
on a mapping or index array. Unlike the gather pattern, which collects 
data, scatter focuses on placing data in non-contiguous or irregular 
memory locations. In CUDA, efficient scatter implementations require 
careful handling of memory writes to avoid race conditions and ensure 
coalesced access when possible.



Applications of Scatter

1.Sorting Algorithms: Writing elements to their correct positions in a 
sorted array.

2.Sparse Matrix Representations: Distributing values into specific non-
zero locations in sparse matrices.

3.Graphics and Rendering: Assigning texture data or transforming 
vertices into frame buffers.

4.Data Partitioning: Splitting datasets into groups or buckets based on a 
condition or key.

5.Simulation and Modeling: Distributing particle properties (e.g., position, 
velocity) into spatial grids.

Scatter is vital for tasks requiring flexible data placement, with 
synchronization and memory optimization critical for high performance in 
GPU implementations.



Race Conditions

A race condition occurs when multiple threads in a parallel program 
attempt to access and modify the same memory location simultaneously, 
leading to undefined or incorrect results. This happens because threads 
execute independently, and without proper synchronization, one thread 
may overwrite the changes made by another. In CUDA programming, 
race conditions are common when threads in a block write to shared 
memory or when multiple threads across blocks write to the same global 
memory address. To avoid race conditions, developers can use atomic 
operations, which ensure only one thread modifies a memory location at 
a time, or synchronization mechanisms like __syncthreads() within 
blocks to control access to shared resources.



Coalesced Memory Access

Coalesced memory access occurs when threads in a warp access 
consecutive memory addresses, allowing the GPU to combine those 
requests into a single transaction with global memory. This is highly 
efficient because it minimizes the number of memory transactions and 
maximizes memory bandwidth utilization. Coalesced access is especially 
important in CUDA programming since uncoalesced accesses (e.g., 
scattered or misaligned memory requests) result in higher latency and 
slower performance. Ensuring coalesced access often involves 
structuring data in memory and aligning thread-to-data mappings so that 
each thread accesses a unique, contiguous address in global memory. 
This optimization is crucial for achieving high performance on GPUs.



Stencil

• Tasks read input from a fixed neighborhood in an array.

• Convolution operations in Convolution Neural Networks (CNNs).



Stencil

The stencil parallel pattern is used for computations where each 
element of an output dataset depends on a specific element in the 
input dataset and its neighbors. Threads independently process their 
assigned element and access neighboring values, often defined by a 
fixed radius. This pattern typically involves regular grid structures and is 
highly parallelizable, making it well-suited for GPU acceleration. 
Efficient stencil implementations use shared memory to cache data and 
reduce redundant global memory accesses.



Applications of Stencil

1.Image Processing: Applying convolution filters (e.g., Gaussian blur, 
edge detection) where each pixel is updated based on its neighbors.

2.Scientific Simulations: Modeling physical phenomena like heat 
diffusion, wave propagation, or fluid dynamics.

3.Finite Difference Methods: Solving partial differential equations (PDEs) 
using neighbor-based calculations.

4.Computational Physics: Updating grid cells in simulations like cellular 
automata or particle interaction grids.

5.Weather and Climate Models: Simulating environmental conditions 
using grid-based data, such as temperature or pressure updates.

• The stencil pattern is essential for tasks involving local interactions, with 
shared memory and efficient boundary handling playing key roles in 
optimizing performance.



1D Stencil Example
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radius radius



1D Stencil Example
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• __shared__



1D Stencil Example
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blockDim.x output elements

halo on left halo on right



Shared Memory
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Programming Assignment #2
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Where to experiment and learn?
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ITU’s HPC Cluster

•

•

HPC.ITU.DK ITU HPC Documentation

https://hpc.itu.dk/


How to login!

$ ssh your_username@hpc.itu.dk

Explore around and see what we have on the cluster!

Enter your password:

mailto:your_username@hpc.itu.dk


How to submit a task!

#!/bin/bash

#SBATCH --job-name=cuda_test_job_name   # Job name

#SBATCH --output=cuda_test_output_name   # output file name

#SBATCH --cpus-per-task=1         # Schedule 8 cores (includes hyperthreading)

#SBATCH --gres=gpu             # Schedule a GPU, it can be on 2 gpus like gpu:2

#SBATCH --time=00:05:00          # Run time (hh:mm:ss) - run for one hour max

#SBATCH --partition=scavenge        # Run on either the Red or Brown queue

module load CUDA/12.1.1

nvcc test_cuda.cu -o test_cuda

./test_cuda



Programming Assignment #3

•

•

ehsanyousefzadehasl/CUDA_for_ITU

https://github.com/ehsanyousefzadehasl/CUDA_for_ITU


Links to learn more!

•

•

•

•

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
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