
Programming with CUDA

(ehyo@itu.dk)

mailto:ehyo@itu.dk

3

4

Content

•

•

•

•

5

Why GPUs?

GPUs offer much higher instruction throughput and memory
bandwidth than CPUs within a similar price and power
envelope, making them ideal for applications that require high
parallelism. Unlike CPUs, which excel at executing a few threads
sequentially, GPUs are designed to handle thousands of
threads simultaneously, achieving greater throughput by
focusing more on data processing rather than data caching and
flow control.

Input: an array, Output: squared

Programming Assignment #1

•

•

CUDA_for_ITU/assignments/01-CPU_GPU_difference at main · ehsanyousefzadehasl/CUDA_for_ITU

Number of elements in the input array CPU Time GPU Time

https://github.com/ehsanyousefzadehasl/CUDA_for_ITU/tree/main/assignments/01-CPU_GPU_difference

CUDA

•

•
•
•

•
•

Heterogeneous Computing

•
•

•

Heterogeneous Computing

#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out; // host copies of a, b, c

int *d_in, *d_out; // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in, size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn

Simple Processing Flow

PCI Bus

Simple Processing Flow

PCI Bus

Simple Processing Flow

PCI Bus

Hello World!

• ($nvcc

•

int main(void) {

printf("Hello World!\n");

return 0;

}

$ nvcc 00-hello_world.cu –o 00-hello_world

Hello World!

__global__ void helloWorld(void) {

printf("Hello from thread %d from block %d\n",

threadIdx.x, blockIdx.x);

}

int main(void) {

mykernel<<<10,100>>>();

return 0;

}

Hello World! with Device Code

• __global__

•

•

• nvcc

• helloWorld()

• main()

Hello World! with Device Code

helloWorld<<<1,1>>>();

•
•

•

•

Adding two Arrays

•

•

•
•

•
A B C

CPU SIMD Instructions
SIMD (Single Instruction, Multiple Data) Instructions: SIMD is a type of
parallel processing in CPUs where a single instruction is executed
simultaneously on multiple pieces of data. This is particularly useful for
operations like vector and matrix computations, image processing, or any
tasks that involve performing the same operation on large datasets. In SIMD,
data is stored in vectors (arrays of elements), and special SIMD registers
process multiple elements in parallel. For example, a CPU with 256-bit SIMD
registers can process eight 32-bit numbers or sixteen 16-bit numbers at once.
This allows significant performance improvements by leveraging data-level
parallelism. Modern CPUs provide SIMD extensions like Intel’s SSE and
AVX, or ARM’s NEON, which are designed to optimize workloads in fields like
scientific computing, multimedia processing, and machine learning. SIMD
helps CPUs handle tasks that require high throughput, enabling faster
computations compared to processing data sequentially.

Adding two Arrays

•
•

a b c

Terminology

CUDA C++ Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

The logic behind the add we checked!

• add<<<4, 8>>>(A, B, C, N)

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

0 + 0 * 8 6 + 1 * 8 = 14 7 + 3 * 8 = 31

int index = threadIdx.x + blockIdx.x * blockDim.x;

Basic device (GPU) memory management

•

•

•

Parallel Communication Patterns

• Parallel computing is about many threads solving a problem by working
together. The key to working together is communication. In CUDA,
communication takes place through memory.

• There are different kinds of parallel communication patterns and they
are about how to map tasks (threads) and memory.

• Some of the important patterns: map, gather, scatter, stencil, transpose

Map

Map

• The map parallel pattern is a fundamental concept in parallel
programming where the same operation is independently applied to
every element of a dataset. It is an embarrassingly parallel pattern,
meaning there are no dependencies between elements, so all operations
can be executed in parallel without requiring communication between
threads.

• In CUDA programming, the map pattern is often implemented by
assigning one thread to process one or more elements of the dataset.
The map pattern is particularly efficient because it allows maximum
utilization of GPU cores by distributing work evenly across threads.

Applications of Map
• Image Processing: Applying filters (e.g., grayscale conversion,

brightness adjustment) where each pixel can be processed
independently.

• Scientific Simulations: Computing mathematical functions (e.g., sine,
cosine, or exponential) for large arrays of input values.

• Data Transformation: Converting or normalizing datasets, such as
scaling numerical values or applying logarithmic transformations.

• Graphics Rendering: Transforming vertex coordinates or applying
color transformations in GPU-accelerated graphics.

• Machine Learning: Element-wise activation functions (e.g., ReLU,
sigmoid) applied to neural network layers.

The map pattern's simplicity and lack of inter-thread communication
make it a highly efficient and scalable approach for parallelizing
independent computations.

Gather

Gather

The gather parallel pattern is a common approach in parallel
programming where data is collected from multiple memory locations
into a single output dataset. Each thread retrieves data from one or
more indices of the input dataset and performs operations to produce its
corresponding result. Unlike the map pattern, the gather pattern often
involves non-contiguous memory accesses, as threads may need to
access scattered input locations. In CUDA, implementing an efficient
gather pattern requires careful memory management to minimize
uncoalesced global memory access.

Applications of Gather

The gather pattern is frequently used in tasks where specific data needs to be extracted
or rearranged:

1.Matrix Operations: Extracting rows, columns, or specific elements for sub-matrix
computations.

2.Image Processing: Sampling data from scattered pixel locations (e.g., texture
mapping, image warping).

3.Scientific Simulations: Collecting data points from irregular grids or domains for
further processing.

4.Data Rearrangement: Reorganizing datasets (e.g., shuffling, grouping, or sorting by
specific criteria).

5.Graphics and Rendering: Gathering vertex or texture data for 3D transformations or
rendering pipelines.

The gather pattern's flexibility makes it ideal for handling irregular or scattered datasets,
though optimizing memory access patterns is crucial to achieve high performance on
GPUs.

Reduce

Common Parallel Patterns | SpringerLink

https://link.springer.com/chapter/10.1007/978-1-4842-5574-2_14#:~:text=A%20reduction%20is%20a%20common,commutative%20(e.g.%2C%20addition).

Reduce

The reduce parallel pattern involves combining elements of a
dataset into a single result using a specified operation, such as
summation, multiplication, or finding the maximum. In CUDA, this pattern
is typically implemented by assigning threads to process parts of the
dataset and then performing a hierarchical reduction in shared
memory, where partial results are iteratively combined until only one
result remains. Reduction is a key pattern in parallel programming as it
efficiently aggregates data while minimizing global memory accesses.

Applications of Reduce

1.Scientific Simulations: Summing physical quantities (e.g., energy, mass) or
calculating averages over large datasets.

2.Data Analytics: Computing metrics like totals, maximums, minimums, or
variance across datasets.

3.Machine Learning: Summing gradients during backpropagation or
aggregating results in distributed computations.

4.Graphics: Calculating light intensity or pixel averages in rendering pipelines.

5.Financial Modeling: Aggregating transaction data for totals or risk analysis.

The reduce pattern is essential for summarizing large datasets efficiently, with
shared memory and synchronization ensuring optimal performance on GPUs.

Scatter

•

•

•

Scatter

The scatter parallel pattern distributes data from a single input dataset
to specific locations in an output dataset. Each thread takes a portion
of the input and writes it to one or more indices in the output, often based
on a mapping or index array. Unlike the gather pattern, which collects
data, scatter focuses on placing data in non-contiguous or irregular
memory locations. In CUDA, efficient scatter implementations require
careful handling of memory writes to avoid race conditions and ensure
coalesced access when possible.

Applications of Scatter

1.Sorting Algorithms: Writing elements to their correct positions in a
sorted array.

2.Sparse Matrix Representations: Distributing values into specific non-
zero locations in sparse matrices.

3.Graphics and Rendering: Assigning texture data or transforming
vertices into frame buffers.

4.Data Partitioning: Splitting datasets into groups or buckets based on a
condition or key.

5.Simulation and Modeling: Distributing particle properties (e.g., position,
velocity) into spatial grids.

Scatter is vital for tasks requiring flexible data placement, with
synchronization and memory optimization critical for high performance in
GPU implementations.

Race Conditions

A race condition occurs when multiple threads in a parallel program
attempt to access and modify the same memory location simultaneously,
leading to undefined or incorrect results. This happens because threads
execute independently, and without proper synchronization, one thread
may overwrite the changes made by another. In CUDA programming,
race conditions are common when threads in a block write to shared
memory or when multiple threads across blocks write to the same global
memory address. To avoid race conditions, developers can use atomic
operations, which ensure only one thread modifies a memory location at
a time, or synchronization mechanisms like __syncthreads() within
blocks to control access to shared resources.

Coalesced Memory Access

Coalesced memory access occurs when threads in a warp access
consecutive memory addresses, allowing the GPU to combine those
requests into a single transaction with global memory. This is highly
efficient because it minimizes the number of memory transactions and
maximizes memory bandwidth utilization. Coalesced access is especially
important in CUDA programming since uncoalesced accesses (e.g.,
scattered or misaligned memory requests) result in higher latency and
slower performance. Ensuring coalesced access often involves
structuring data in memory and aligning thread-to-data mappings so that
each thread accesses a unique, contiguous address in global memory.
This optimization is crucial for achieving high performance on GPUs.

Stencil

• Tasks read input from a fixed neighborhood in an array.

• Convolution operations in Convolution Neural Networks (CNNs).

Stencil

The stencil parallel pattern is used for computations where each
element of an output dataset depends on a specific element in the
input dataset and its neighbors. Threads independently process their
assigned element and access neighboring values, often defined by a
fixed radius. This pattern typically involves regular grid structures and is
highly parallelizable, making it well-suited for GPU acceleration.
Efficient stencil implementations use shared memory to cache data and
reduce redundant global memory accesses.

Applications of Stencil

1.Image Processing: Applying convolution filters (e.g., Gaussian blur,
edge detection) where each pixel is updated based on its neighbors.

2.Scientific Simulations: Modeling physical phenomena like heat
diffusion, wave propagation, or fluid dynamics.

3.Finite Difference Methods: Solving partial differential equations (PDEs)
using neighbor-based calculations.

4.Computational Physics: Updating grid cells in simulations like cellular
automata or particle interaction grids.

5.Weather and Climate Models: Simulating environmental conditions
using grid-based data, such as temperature or pressure updates.

• The stencil pattern is essential for tasks involving local interactions, with
shared memory and efficient boundary handling playing key roles in
optimizing performance.

1D Stencil Example

•
•

•

radius radius

1D Stencil Example

•
• blockDim.x

•
•

•

•

• __shared__

1D Stencil Example
•

–

–

–

–

blockDim.x output elements

halo on left halo on right

Shared Memory

•
•

•
•

•
•

Programming Assignment #2

•

Where to experiment and learn?

•
•

•
•

ITU’s HPC Cluster

•

•

HPC.ITU.DK ITU HPC Documentation

https://hpc.itu.dk/

How to login!

$ ssh your_username@hpc.itu.dk

Explore around and see what we have on the cluster!

Enter your password:

mailto:your_username@hpc.itu.dk

How to submit a task!

#!/bin/bash

#SBATCH --job-name=cuda_test_job_name # Job name

#SBATCH --output=cuda_test_output_name # output file name

#SBATCH --cpus-per-task=1 # Schedule 8 cores (includes hyperthreading)

#SBATCH --gres=gpu # Schedule a GPU, it can be on 2 gpus like gpu:2

#SBATCH --time=00:05:00 # Run time (hh:mm:ss) - run for one hour max

#SBATCH --partition=scavenge # Run on either the Red or Brown queue

module load CUDA/12.1.1

nvcc test_cuda.cu -o test_cuda

./test_cuda

Programming Assignment #3

•

•

ehsanyousefzadehasl/CUDA_for_ITU

https://github.com/ehsanyousefzadehasl/CUDA_for_ITU

Links to learn more!

•

•

•

•

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

	Slide 1: Programming with CUDA
	Slide 2
	Slide 3: Some slides are for later reading.
	Slide 4: Slides with the "Hands-On" tag indicate that the teacher will dive into the code and execute it live during the class.
	Slide 5: Content
	Slide 6: Why GPUs?
	Slide 7: Input: an array, Output: squared
	Slide 8: Programming Assignment #1
	Slide 9: CUDA
	Slide 10: Heterogeneous Computing
	Slide 11: Heterogeneous Computing
	Slide 12: Simple Processing Flow
	Slide 13: Simple Processing Flow
	Slide 14: Simple Processing Flow
	Slide 15: Hello World!
	Slide 16: Hello World!
	Slide 17: Hello World! with Device Code
	Slide 18: Hello World! with Device Code
	Slide 19: Adding two Arrays
	Slide 20: CPU SIMD Instructions
	Slide 21: Adding two Arrays
	Slide 22: Terminology
	Slide 23: The logic behind the add we checked!
	Slide 24: Basic device (GPU) memory management
	Slide 25: Parallel Communication Patterns
	Slide 26: Map
	Slide 27: Map
	Slide 28: Applications of Map
	Slide 29: Gather
	Slide 30: Gather
	Slide 31: Applications of Gather
	Slide 32: Reduce
	Slide 33: Reduce
	Slide 34: Applications of Reduce
	Slide 35: Scatter
	Slide 36: Scatter
	Slide 37: Applications of Scatter
	Slide 38: Race Conditions
	Slide 39: Coalesced Memory Access
	Slide 40: Stencil
	Slide 41: Stencil
	Slide 42: Applications of Stencil
	Slide 43: 1D Stencil Example
	Slide 44: 1D Stencil Example
	Slide 45: 1D Stencil Example
	Slide 46: Shared Memory
	Slide 47: Programming Assignment #2
	Slide 48: Where to experiment and learn?
	Slide 49: ITU’s HPC Cluster
	Slide 50: How to login!
	Slide 51: How to submit a task!
	Slide 52: Programming Assignment #3
	Slide 53: Links to learn more!
	Slide 54

