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P:a-C’-V2-f

* Parallel Processor

where:

o P:Total power consumption of the processor.

a:: Activity factor, representing the fraction of transistors actively switching in each clock cycle. It

* Throughput-oriented

ranges from O to 1.

[ ]

C': Capacitance of the processor’s circuits, a measure of how much charge the circuits can hold.

* Low Working Frequency

[ ]

V- Supply voltage, or operating voltage, applied to the processor.

f: Operating frequency (clock speed) of the processor, which directly influences the speed of

operations.
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COMPUTER ARCHITECTURE IS THE ART AND SCIENCE OF TRADEOFFS!
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P=a-C-V?.f
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—a-C-V2.

Higher Performance ~ Higher Speed

Higher Speed ~ Increase working frequency (f)




GPU & Parallelism S

GPUs, or Graphics Processing Units, are parallel processors designed to handle

multiple tasks simultaneously. Unlike CPUs, which focus on sequential
processing with a few powerful cores, GPUs have thousands of smaller cores
optimized for parallel execution, allowing them to process large blocks of data
at once. For a program to benefit from GPU power, it must have a parallel nature
or be parallelizable, meaning tasks can be divided into smaller, independent

operations that can run concurrently across GPU cores.



Where GPUs Excel: Example 1

Image and Video Processing

GPUs are optimized for manipulating large matrices, making them ideal for
image and video processing. When rendering high-resolution images or
processing video frames, GPUs can handle the parallel nature of pixel and
frame-based operations, such as color transformation, shading, and rendering
effects. By executing operations for thousands of pixels simultaneously,
GPUs achieve faster processing times, which is critical in real-time rendering

for video games, 3D modeling, and visual effects.



Where GPUs Excel: Example 2 &

Deep Learning and Al

Neural networks, especially in deep learning, involve repetitive matrix
multiplications across multiple layers of neurons. GPUs excel at these tasks by
parallelizing matrix operations—specifically, tensor computations, which involve
linear algebra at a massive scale. Libraries like CUDA and cuDNN (from NVIDIA)
are optimized to leverage GPU cores for deep learning frameworks such as
TensorFlow and PyTorch, enabling accelerated training times and efficient
model inference. For example, training a convolutional neural network (CNN) on
image data can be significantly faster on a GPU than on a CPU due to the ability

to process multiple convolution operations in parallel.



Where CPUs Win:; Example 1 '*

General-Purpose Computing

CPUs are designed to handle a wide range of tasks with complex branching logic,
which is essential for running operating systems, applications, and user-driven
tasks. CPUs feature fewer but more powerful cores optimized for executing
instructions in sequence, making them better suited for varied operations that
require frequent decision-making and task-switching, such as file management,

internet browsing, and office applications.



Where CPUs Win: Example 2 &

Low-Latency Requirements

CPUs are optimized for low-latency tasks where the system must respond quickly
to input. For example, database servers and real-time analytics require low-latency
responses to user queries or data updates. With their large cache memory and high
single-threaded performance, CPUs provide immediate access to data and can
handle I/0 operations more effectively than GPUs, which are optimized for large,

parallelizable tasks rather than quick task switching.



Where CPUs Win: Example 3 '*

Single-Threaded Performance

Some applications, like code compilation and certain scientific algorithms, are
inherently sequential and cannot be parallelized. CPUs have higher clock speeds
and superior single-thread performance compared to GPUs, making them ideal for
these single-threaded tasks. For instance, certain steps in data analysis, such as
indexing or data sorting, are faster on a CPU as they benefit from its focus on

sequential processing rather than parallel execution.



GPUs as Throughput-Oriented Processors ‘

GPUs are often described as "throughput-oriented processors,” meaning they are designed
to maximize the volume of data processed over time, rather than focusing on minimizing
the time taken for each individual operation. This high throughput is achieved by utilizing a
large number of simpler cores that operate in parallel, enabling GPUs to handle substantial
amounts of data simultaneously. Unlike CPUs, which are optimized for low latency and
excel in sequential processing tasks, GPUs are optimized for throughput, making them
particularly effective for applications that require processing large datasets in parallel. This
design makes GPUs highly suitable for tasks such as image processing, scientific
simulations, and deep learning, where handling many operations at once is essential for

performance.



Why GPUs Operate at Lower Frequencies ‘

GPUs are considered "low working frequency processors,” meaning they operate at
lower clock speeds compared to CPUs. While CPUs are designed with high clock
frequencies to execute individual tasks quickly, GPUs focus on parallelism rather
than speed per core. By using lower clock frequencies, GPUs consume less power
per core, allowing them to support thousands of cores running simultaneously.
This design makes them highly efficient for tasks requiring massive parallel
computation, such as rendering graphics, running machine learning models, and
processing large data arrays, where the collective processing power of many cores

is more beneficial than the high-speed performance of a few cores.
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Story of NVIDIA GPUs

* Early GPUs: specific-function co-processors (ASICs) for graphics
* Programmability: Graphics APIs, e.g., DirectX and OpenGL

* Programmability required:
* Expertise in Computer Graphics
 Data Transformation Techniques



ASICs: Application Specific Integrated Circuits ‘

An ASIC (Application-Specific Integrated Circuit) is a type of hardware designed to perform
a specific task or set of tasks very efficiently. Unlike general-purpose processors, like
CPUs, which are versatile and can handle a wide variety of instructions, ASICs are custom-
built to perform only one particular function or application. Because of this specialization,
ASICs can operate at much higher speeds and lower power consumption than general-
purpose processors when handling their designated tasks. ASICs are commonly used in
devices that need to execute repetitive operations very quickly and with high efficiency,
such as image processing, network devices, audio processing, and specialized parts of
smartphones. For example, in a smartphone, an ASIC might be dedicated to handling
image signal processing (ISP) for the camera, allowing it to quickly enhance photos by
adjusting colors, brightness, and noise with minimal power consumption. However, the
downside of ASICs is their lack of flexibility—once manufactured, they cannot be
repurposed for other tasks, and designing them is costly and time-consuming. This trade-
off makes ASICs ideal for high-volume applications where their speed and efficiency justify
the cost of custom design.
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Program

API like DirectX or OpenGL

GPU Driver

GPU (Hardware implements the API)
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Pre-requisites Terminology

Shader: a computer program performing graphics-related tasks

vertex: a data structure describing a certain attribute, e.g., the position of a point

in 2D or 3D space, or multiple points on a surface.

Vertex shader: a program that transforms each vertex’s 3D position in virtual

space to the 2D coordinate at which it appears on the screen.

Pixel or fragment shader: a program that computes the color, brightness,

contrast, and other attributes of a single pixel or fragment.

23



Early GPUs

* Early GPUs (before 2007) architecture:
» Separate stages of vertex and pixel processors

EARLY GPUS: THE ERA BEFORE CUDA UNLEASHED GENERAL-PURPOSE POWER
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DirectX
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GPU Cards

Fahrenheit

Celsius

Kelvin

Rankine

Curie

1998

1999

2001

2003

2004

20-29M

36-57M

~125M

~220M

350-240nm

180-150nm

|50nm

[50-130nm

| 30-80nm

OpenGL

5.0,6.0

7.0

8.0

9.0a

9.0c

Vanta, Riva Models

GeForce 256
GeForce 2 series

GeForce 3 and 4 series ‘
GeForce 5 (or FX) series

GeForce 6 and 7 series

MOORE'S LAW EFFECT IS EVIDENT IN THE TABLE ON HOW THE

NUMBER OF TRANSISTORS INCREASES OVER THE YEARS.




The Big Shift: CUDA Revolutionizes GPU Computing

* CUDA: Compute Unified Device Architecture

* A parallel computing framework platform and API allowing software
to use certain types of NVIDIA GPUs for general-purpose computing

* CUDA programming is possible for C/C++ programmers can use ‘CUDA
C/C++’ for programming NVIDIA GPUs



From Code to Execution: The CUDA Process

L 4 Compiler for CPU side
nf? NVCC
Comepiler
Translation | GPU Driver
ad o PTX g translates PTX to
Instruction binary code (SASS)

$ nvcc my program.cu -0 my program

28
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CUDA Program
Written in C Language with Extensions

CPU % GPU

Code / \Code

CPU Co-Processor GPU
(Host) (Device)

Kernel

-
Memory - Memory MA \
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Microarchitecture Innovations Enabling the CUDA Revolution

* At 2006, NVIDIA introduced Tesla Microarchitecture

* Implementing a UNIFIED SHADER MODEL ' _
* (remember Separate stages of vertex and pixel processors) b

o

Pl

il
e

-
&~

* Benefits of the Unifications
* Better of Management of Hardware Resources
* Load Balancing between Vertex and Pixel (fragment) stage
* Simpler GPU Design

* Cores became: (1) Sequential (2) Scalar - meaning being able to
work on only one computation task at a time

30
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Microarchitecture Innovations Enabling the CUDA Revolution

* Changed their names to: CUDA cores

* They grouped together in Streaming Multiprocessors (SM), which
replaced split stages of vertex and fragment units

* Each SM receives Thread Blocks that are composed of groups of
threads in the number of 32, which are called warp.

* All threads in a warp execute the same instruction at the same time
but on different data (SIMT: Single Instruction Multiple Thread).
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Microarchitecture Innovations Enabling the CUDA Revolution

» Jonah Alben: the senior vice president of GPU engineering at NVIDIA

We pretty much threw out the entire shader architecture from NV30/NV40 and

made a new one from scratch with a new general processor architecture (SIMT),

that also introduced new processor design methodologies.
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NVIDIA Tesla 2006 Architecture

Bridge
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Nickolls, J.R., Oberman, S.F., & Montrym, J. (2008). NVIDIA Tesla: A Unified Graphics and Computing Architecture. I[EEE Micro, 28.

Lindholm, E,,

ROP: Raster Operation Processors

Perform color and depth frame buffer operations directly on memory
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Inside a TPC

Hierarchy of Memory:

|- Local
2- Shared

TPC

Geometry controller

Lindholm, E., Nickolls, J.R., Oberman, S.F., & Montrvm, J. (2008). NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28.

SMC
SM SM

| cache | cache
MT issue MT issue
C cache C cache
SP SP SP SP
SP SP SP SP
SP SP SP SP
SP SP SP SP
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Shared Shared

memory memory
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Inside a SM

Enabling/ disabling threads

in warp when their PC
converge or diverge

Round Robin scheduling for warps
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Able to do integer (24 bit) and
float32 operations per clock
(float64 operations must be

done in software)

Lindholm, E., Nickolls, J.R., Oberman, S.F., & Montrym, J. (2008). NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28. 35



THE EXECUTION MODEL!

Kernel

SP
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Over time

* Fermi (2010)

* Kepler (2012)
* Maxwell (2014)
* Pascal (2016)

* Volta (2017)

* Turing (2018)

* Ampere (2020)
* Hopper (2022)
» Ada Lovelace (2022)
* Blackwell (2024)

37



More?

* Next Lecture we will see Advanced Capabilities of NVIDIA GPUs, and
learn how to program with CUDA.

* NVIDIA GPUs story
NVIDIA GPUs story. | by Ehsan Yousefzadeh-Asl-Miandoab | Medium

* Parallel Computing with GPUs
ehsanyousefzadehasl/PCwGPGPUs: Parallel Computing with GPGPUs

38


https://medium.com/computing-systems-and-hardware-for-emerging/nvidia-gpus-story-0c7f86afa9a8
https://github.com/ehsanyousefzadehasl/PCwGPGPUs

IT UNIVERSITY OF CPH

Content

e GPUs
» Story of NVIDIA GPUs

+FPGA
* Accelerator
* Tradeoff of processors



.
FPGASs: Field Programmable Gate Array

* A hardware that can be configured after being manufactured

* Initial Purpose:

* Prototyping digital circuits and testing Logic Designs (before being manufactured
as an ASIC)

* Implementing small, custom digital circuits (using the FPGA as that circuit)
* Flexibility was considered more important, not performance or power

* Early Challenges:
* A deep understanding of hardware design
* Low-level hardware description languages (HDLs) like Verilog and VHDL

 Early FPGA work demanded a solid grasp of
* Digital logic concepts,
» Timing analysis, and circuit behavior
* Hardware Experts (Digital Electronic Engineers)



IT UNIVERSITY OF CPH

4 / Boards / AMD Artix 7 FPGA AC701 Evaluation Kit

AMD Artix 7 FPGA AC701 Evaluation Kit
by: AMD

AMD

The Artix™ 7 FPGA AC701 Evaluation Kit features the leading system performanc

quickIy prototyping fI:-r your cost sensitive applications.

Price: $1,678.00

Part Number: EK-A7-AC701-G
Lead Time: 6 Weeks

Device Support: Artix-7

Buy

@, Click to Enlarge

https:/www.xilinx.com/products/boards-and-kits/ek-a/-ac/01-g.html
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An Intel Company

FPGAs Big Players

* Xilinix and Altera AMD N
* Developed many of the innovations in FPGA technology
* Advanced Architecture X”—lNX

* High-level Programming Tools

* Intel acquired Altera
* integrating Altera’s FPGA technology into Intel’s product lineup

* AMD acquired Xilinx in 2022

* To enhance its data center and high-performance computing offerings with Xilinx’s
FPGA technology
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Integration with CPUs

* Both Intel and AMD

* integrate FPGAs with CPUs on a single chip or in multi-chip modules

« combines the flexibility and parallelism of FPGAs with the general-purpose processing power
of CPUs

« Heterogeneous Computing

* Benefits

* Sharing Same Memory Space
* Reducing Latency between CPU/FPGA

* FPGA acceleration for tasks, like:
Encryption

Compression

Machine Learning Inference

Data Filtering

inte

EEEEFEEE]
FEEEEEE

-FREE-SREENREEIE

Intel” Xeon’
Scalable processor
with integrated

jI08 1
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Integration with CPUs
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Al Edge Series Gen 2 Prime Series Gen 2

Next-generation Al Engines, hizh-performance integrated CPUs, and High-performance integrated CPUs, programmable logic, and 8K video
programmable logic enabling preprocessing, Al inference, and

processing for next-level classic embedded systems across a wide range
postprocessing for Al-driven embedded systems—all in a single device.

of markets.

https:/www.amd.com/en/products/adaptive-socs-and-fpgas/versal.html a4



https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal.html

Applications of FPGAs P

* |nitial Applications: Early on, FPGAs were mainly used in telecommunications, signal
processing, and embedded systems where custom digital logic was required but dedicated
ASICs weren’t economical.

* Modern Applications:
» Data Centers: For accelerating tasks like Al inference, data processing, and high-speed networking.

* 5G and Telecommunications: For signal processing, packet processing, and handling data transfer in base
stations.

* Automotive: Used in advanced driver-assistance systems (ADAS) and autonomous vehicle applications,
where reconfigurability allows for updates as new features are developed.

* Financial Services: In high-frequency trading, where FPGAs can execute complex algorithms with extremely
low latency.

» Aerospace and Defense: For radar processing, encryption, and secure communications, where real-time
processing and reliability are critical.




Current State and Modern Applications [ &

* State of FPGAs: FPGAs are now key components in data center and edge computing
infrastructures, used for both prototyping and production systems. With continued
investment from Intel and AMD, FPGAs are becoming more tightly integrated with CPUs and
GPUs, enhancing performance for a wider range of applications (Heterogenous Computing).

e Modern Applications: FPGAs are focusing on accelerating complex, compute-heavy tasks in
areas such as:

* Machine Learning and Al: FPGA-based Al inference accelerators are growing in popularity due to their low latency and
ability to be reconfigured for different models or algorithms.

* Real-Time Data Processing: FPGAs are ideal for tasks that require real-time, high-throughput processing, such as video
streaming, |oT data analysis, and sensor data processing.

» Cybersecurity: FPGAs can be used for encryption, decryption, and secure processing, particularly in industries that
require high security and flexibility.

* Cloud Computing: FPGAs are now available as part of cloud platforms like AWS (with F1 instances) and Microsoft Azure,
providing hardware acceleration for users without needing physical access to an FPGA device.
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Inside an FPGA

Input/Output Blocks
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,
Inside an FPGA

* Configurable Logic Block (CLBs): Processing Units of an FPGA

* Can be configured to perform
* Basic logic functions like AND, OR, NOT, XOR
* More complex combinational and sequential logic

* |nside CLBs: CLB
e Look-Up Tables (LUTs)

* Flip-Flops (FFs) LUT N
INPUTS |, [COMBINATIONAL
LOGIC FUNCTION) — FLIPFLOP —

OUTPUTS

\ M/




Inside an FPGA

* Interconnects
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* Connecting CLBs, allowing signals to flow between different parts of the

FPGA
o Switch Matrix

* |/O Blocks

 To interface with external components

* Clocking resources

 ensures consistent timing throughout the chip, providing synchronized

operation for flip-flops and other sequential logic components
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Inside an LUT
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LUT in FPGA Look-up table (LUT)
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Kastner, Ryan & Jung, Chair & Cho, Uk & Rao, Bhaskar
& Sherwood, Timothy & Swanson, Steven & Tullsen,
Dean. GUSTO: General architecture design Utility
and Synthesis Tool for Optimization.
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,
Programming an FPGA

* Fundamentally different from programming a CPU or GPU
* Programming is writing instructions for a processor to execute

* Using a Hardware Description Language (HDL) means:
* Describing the hardware circuitry

* HDL example (Low Level):
* Verilog (VERIfication and LOGic)

« VHDL (VHSIC Hardware Description Language)
* VHSC: Very High-Speed Integrated Circuit)

* High Level Synthesis (HLS) tools:
* Vivado HLS



Process of programming an FPGA

1. Design Description
* The developer describes the intended logic

2. Synthesis

* The HDL is synthesized into a netlist, which is a description of the logic
gates and interconnections needed to implement the design

3. Place and Route

* The FPGA design tool assigns specific CLBs, LUTs, and interconnects on the
FPGA to the gates and connections in the netlist. This process defines which
blocks perform each function and how they are wired.



Low Level programming with Verilog

not nl(not_a, a);

not n2(not_b, b); in);
BEHAVIORAL LEVEL
and a0(oa@, D, not_a, not b);

REGISTER TRANSFER LEVEL (RTL) B — e
module (out,in); =

output out; , .
Vin Vout

GATE LEVEL NN 51 4

_ supplyl PWD; —

|.(_
// out, 1in, control -

SWITCH LEVEL e et a1 =

endmodule




Verilog Example

A Digital System -
(Our Design) -

Input Signals
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Design: a 4-bit counter
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Testbench
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High Level Synthesis (HSL), MM example

#include <iostream>
##define SIZE 4

void matrix_multiply(float A[SIZE][SIZE], float B[SIZE][SIZE], float C[SIZE][SIZE]) {

for (int i = ©; 1 < SIZE; i++) {
for (int j = ©; j < SIZE; j++) {
C[i][3] = @;
for (int k = @; k < SIZE; k++) {
C[i][3] += A[i][k] * B[k][]];
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Accelerator

* Accelerator accelerates (compared to CPU)!

e Accelerator is a flexible term
* Al Accelerator: chips like TPUs and Cerebras
* General Purpose Accelerators like GPUs
e Customn Accelerator like ASICs or FPGAs configured for a specific application
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P O
< <

CEREBRAS WSE-3 LARGEST GPU
46,225mm? Silicon 826mm? Silicon
4 Trillion transistors 80 Billion transistors

https://cerebras.ai/blog/cerebras-architecture-deep-dive-first-look-inside-the-hw/sw-co-design-for-deep-learning 63
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: :
Reading and Learning Loop!

@erebras inference Q

Documentation  API Reference

A

Capabilities Resources

Streaming Responses Examples

Tool Use Run and fork these examples to start building with Cerebras

Resources

Integrations >— &

Examples Getting started with Cerebras Conversational Memory for LLMs with
Inference API Langchain

OpenAl Compatibilit

P P Y Learn how to get started with the Cerebras Explore how to build conversational memory

Inference API for your Al projects. for LLMs using Langchain.

Al Agent Bootcamp

Introduction to Al Agents

- S

Tool Use and Function Calling

RAG with Pinecone + Docker RAG with Weaviate + HuggingFace
Implement Retrieval-Augmented Generation Implement Retrieval-Augmented Generation
Support (RAG) using Pinecone and Docker. (RAG) using Weaviate and HuggingFace.

64
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Cerebras Wafer-Scale Engine (WS

\

* Cerebras WSE is an entire silicon wafer used as a single massive chip

* The large surface area enables an extensive number of processing cores, memory, and
interconnections in a single chip, reducing the need for multiple, smaller chips
communicating across a board.

* The WSE includes over 40 GB of on-chip SRAM memory spread across the wafer. This
proximity to the processing cores provides high bandwidth and low latency memory
access. This eliminates the need for external memory modules, reducing delays and
energy consumption associated with off-chip data transfer, which is a common
bottleneck in traditional Al accelerators.

* Cerebras uses a high-speed, low-latency interconnect fabric that connects all cores
on the chip, enabling efficient data flow across the entire wafer.

* Optimization for Al Workloads:

* The Cerebras WSE is specifically optimized for deep learning and Al workloads, handling large
matrix multiplications and tensor operations at a scale that traditional chips struggle with.

* The architecture allows for model parallelism, where different parts of a neural network can run
concurrently, making it highly efficient for training and inference tasks on large models.




- .
Google Tensor Processing Unit (TPU)

* A custom-designed accelerator developed by Google specifically for Al and
machine learning tasks.

* The core of the TPU architecture is: Matrix Multiply Unit (MXU)

 Inside MXUs, there are 128x128 systolic arrays

* thousands of multiplications and additions happen in parallel, significantly speeding up tensor
operations.

* Unlike CPUs, and GPUs, TPUs designed specially for Al tasks
* They avoid unnecessary caches and complex control units

* High Bandwidth Memory (HBM)

. Programming with TensorFlow and JAX libra r}I/_ (Google’s XLA compiler is
used to further optimize TensorFlow code for TPU hardware, by fusing
ogc.er.atlor)w and minimizing memory usage, making TPU execution more
erficient.
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Scalability with TPU pods!
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How Systolic Arrays work!
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High Bandwidth Memory (HBM) &

* High Bandwidth Memory (HBM) is an advanced type of memory technology designed to provide
faster data transfer rates and higher memory bandwidth than traditional memory types, such as DDR
(Double Data Rate) memory. HBM achieves this efficiency through a unique design where memory
chips are stacked vertically and connected using a technology called through-silicon vias (TSVs). This
stacking allows multiple layers of memory to be connected closely, enabling data to travel shorter
distances compared to traditional memory layouts.

 HBM'’s vertical stacking also places it much closer to the processor, typically on the same package or
die. This proximity reduces latency—the delay before data transfer begins—and significantly
increases bandwidth, or the rate at which data can move between memory and the processor. HBM
can handle massive amounts of data simultaneously, making it especially beneficial for high-

performance computing tasks like Al, deep learning, and graphics rendering, where large datasets
need to be processed quickly.

* The efficiency of HBM comes not only from its hi%h bandwidth but also from its power efficiency. By
keeping memory closer to the processor and enabling faster data access, HBM reduces the energy
needed to transfer data, resulting in lower overall power consumption. This combination of high
bandwidth, low latency, and energy efficiency makes HBM an ideal choice for modern accelerators,
such as GPUs and TPUs, where fast, efficient memory access is crucial for performance.
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Content

e GPUs
» Story of NVIDIA GPUs

*FPGA
* Accelerator
* Tradeoff of processors



Tradeoff!

Processor | Programmability

Promised
Performance

CPU Easy (use any programming
language you know)

GPU Medium (learning CUDAL)

FPGA Hard (Learn Verilog + Digital
electronics basics)

Accelerator Very Hard (read docs and learn
concepts of the filed like Al)

Flexibility

(Different

Programs)
Latency Super High
Oriented

Throughput High
Oriented

Both Low

Both Super Low

Fair

Medium

High

Super High



Explore and Discover!

CUDA C++ Programming Guide (nvidia.com)
CUDA Toolkit - Free Tools and Training | NVIDIA Developer

NVIDIA Blog
Deep Learning Institute and Training Solutions | NVIDIA
DGX Platform | NVIDIA

Intel Field Programmable Gate Arrays (FPGA) Technical Training | Intel

Product - Chip - Cerebras
Products | Coral

Altera® FPGAs and Programmable Devices (intel.com)

Reimaaining the Data Center (amd.com)

FPGAs & 3D ICs (xilinx.com)

tel® Core™ Processors - View Latest Generation Core Processors

AMD Processors | AMD
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/cuda-toolkit
https://blogs.nvidia.com/
https://www.nvidia.com/en-us/training/
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html
https://www.cerebras.net/product-chip/
https://coral.ai/products/
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.amd.com/en/solutions/data-center/insights.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.intel.com/content/www/us/en/products/details/processors/core.html
https://www.amd.com/en/processors
https://www.nvidia.com/en-us/data-center/dgx-platform/
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Questions?

Thanks foryour attention!
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Backup in case anyone is curious!



Modern CPUs

< B T
They fetch and execute more than one instruction (a windows of instruction) /' gz 0 @‘\
* Higher throughput 4 Y A '
, of

Advanced Hardware Execution Mechanisms to execute faster

Employ Cache Hierarchy to fill the Memory-Processor performance gap
* Temporal/ Spatial Locality

They have several cores (parallel computing)

Tomasulo Yale Patt
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CPU Core

Cache Hierarchy

Less Access latency

More Data Locality [ }

Less Storage Capacity
More Expensive per bit DRV
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Pipelining
Instl 011, 012
. Inst2 021, 022
* Basic Processor T
Instruction 1 Instruction 2

A

IT UNIVERSITY OF CPH

Operand

Instruction 3

A

[ \ [

A
) [
F b D
1ns 1ns 2ns 1ns 2ns 1Ins 1ns 2ns 1ns 2ns 1ns

Overall Time of Executing three Instruction: 3 * (1ns + 1ns + 2ns + 1ns + 2ns) =3 * 7ns = 21ns

1ns 2ns 1ns 2ns
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Pipelining

* Pipelined Basic Processor i 611 01

Instruction 1 Inst2 021, 022
A

[ ! Inst3 031, 032

Operand

OC

Collect

2ns 2ns 2Nns 2ns 2ns

Instruction 2

®-
A

[ ! Overall Time of Executing three Instruction:

OC E WB

=(2ns + 2ns + 2ns + 2ns + 2ns) + 2ns + 2ns

2ns 2ns 2ns 2ns 2ns =10ns + 2ns + 2ns = 14ns

Instruction 3
|

| |
S
2ns 2ns 2ns 2ns 2ns
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