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Computer Architecture is the art and science of Tradeoffs!



7

Performance Power Consumption
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Performance Power Consumption
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Performance Power Consumption Higher Performance ~ Higher Speed

Higher Speed ~ Increase working frequency (f)



GPU & Parallelism

GPUs, or Graphics Processing Units, are parallel processors designed to handle

multiple tasks simultaneously. Unlike CPUs, which focus on sequential

processing with a few powerful cores, GPUs have thousands of smaller cores

optimized for parallel execution, allowing them to process large blocks of data

at once. For a program to benefit from GPU power, it must have a parallel nature

or be parallelizable, meaning tasks can be divided into smaller, independent

operations that can run concurrently across GPU cores.
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Where GPUs Excel: Example 1
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Image and Video Processing

GPUs are optimized for manipulating large matrices, making them ideal for 

image and video processing. When rendering high-resolution images or 

processing video frames, GPUs can handle the parallel nature of pixel and 

frame-based operations, such as color transformation, shading, and rendering 

effects. By executing operations for thousands of pixels simultaneously, 

GPUs achieve faster processing times, which is critical in real-time rendering 

for video games, 3D modeling, and visual effects.



Where GPUs Excel: Example 2
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Deep Learning and AI

Neural networks, especially in deep learning, involve repetitive matrix 

multiplications across multiple layers of neurons. GPUs excel at these tasks by 

parallelizing matrix operations—specifically, tensor computations, which involve 

linear algebra at a massive scale. Libraries like CUDA and cuDNN (from NVIDIA) 

are optimized to leverage GPU cores for deep learning frameworks such as 

TensorFlow and PyTorch, enabling accelerated training times and efficient 

model inference. For example, training a convolutional neural network (CNN) on 

image data can be significantly faster on a GPU than on a CPU due to the ability 

to process multiple convolution operations in parallel.



Where CPUs Win: Example 1

General-Purpose Computing

CPUs are designed to handle a wide range of tasks with complex branching logic, 

which is essential for running operating systems, applications, and user-driven 

tasks. CPUs feature fewer but more powerful cores optimized for executing 

instructions in sequence, making them better suited for varied operations that 

require frequent decision-making and task-switching, such as file management, 

internet browsing, and office applications.
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Where CPUs Win: Example 2

Low-Latency Requirements

CPUs are optimized for low-latency tasks where the system must respond quickly 

to input. For example, database servers and real-time analytics require low-latency 

responses to user queries or data updates. With their large cache memory and high 

single-threaded performance, CPUs provide immediate access to data and can 

handle I/O operations more effectively than GPUs, which are optimized for large, 

parallelizable tasks rather than quick task switching.
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Where CPUs Win: Example 3

Single-Threaded Performance

Some applications, like code compilation and certain scientific algorithms, are 

inherently sequential and cannot be parallelized. CPUs have higher clock speeds 

and superior single-thread performance compared to GPUs, making them ideal for 

these single-threaded tasks. For instance, certain steps in data analysis, such as 

indexing or data sorting, are faster on a CPU as they benefit from its focus on 

sequential processing rather than parallel execution.
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GPUs as Throughput-Oriented Processors

GPUs are often described as "throughput-oriented processors," meaning they are designed 

to maximize the volume of data processed over time, rather than focusing on minimizing 

the time taken for each individual operation. This high throughput is achieved by utilizing a 

large number of simpler cores that operate in parallel, enabling GPUs to handle substantial 

amounts of data simultaneously. Unlike CPUs, which are optimized for low latency and 

excel in sequential processing tasks, GPUs are optimized for throughput, making them 

particularly effective for applications that require processing large datasets in parallel. This 

design makes GPUs highly suitable for tasks such as image processing, scientific 

simulations, and deep learning, where handling many operations at once is essential for 

performance.

16



Why GPUs Operate at Lower Frequencies

GPUs are considered "low working frequency processors," meaning they operate at 

lower clock speeds compared to CPUs. While CPUs are designed with high clock 

frequencies to execute individual tasks quickly, GPUs focus on parallelism rather 

than speed per core. By using lower clock frequencies, GPUs consume less power 

per core, allowing them to support thousands of cores running simultaneously. 

This design makes them highly efficient for tasks requiring massive parallel 

computation, such as rendering graphics, running machine learning models, and 

processing large data arrays, where the collective processing power of many cores 

is more beneficial than the high-speed performance of a few cores.
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Story of NVIDIA GPUs
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ASICs: Application Specific Integrated Circuits

An ASIC (Application-Specific Integrated Circuit) is a type of hardware designed to perform 
a specific task or set of tasks very efficiently. Unlike general-purpose processors, like 
CPUs, which are versatile and can handle a wide variety of instructions, ASICs are custom-
built to perform only one particular function or application. Because of this specialization, 
ASICs can operate at much higher speeds and lower power consumption than general-
purpose processors when handling their designated tasks. ASICs are commonly used in 
devices that need to execute repetitive operations very quickly and with high efficiency, 
such as image processing, network devices, audio processing, and specialized parts of 
smartphones. For example, in a smartphone, an ASIC might be dedicated to handling 
image signal processing (ISP) for the camera, allowing it to quickly enhance photos by 
adjusting colors, brightness, and noise with minimal power consumption. However, the 
downside of ASICs is their lack of flexibility—once manufactured, they cannot be 
repurposed for other tasks, and designing them is costly and time-consuming. This trade-
off makes ASICs ideal for high-volume applications where their speed and efficiency justify 
the cost of custom design.
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Pre-requisites Terminology
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Early GPUs
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•

Early GPUs: The Era Before CUDA Unleashed General-Purpose Power



25Montrym, J. & Moreton, Henry, “The GeForce 6800,” Micro (2005), IEEE. 25. 41–51. 10.1109/MM.2005.37



Early GPUs
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Moore’s law effect is evident in the table on how the 
number of transistors increases over the years.



The Big Shift: CUDA Revolutionizes GPU Computing
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From Code to Execution: The CUDA Process
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$ nvcc my_program.cu -o my_program
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Microarchitecture Innovations Enabling the CUDA Revolution
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Microarchitecture Innovations Enabling the CUDA Revolution
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Microarchitecture Innovations Enabling the CUDA Revolution
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NVIDIA Tesla 2006 Architecture
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Inside a TPC
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Inside a SM
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Over time
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More?

• Next Lecture we will see Advanced Capabilities of NVIDIA GPUs, and 
learn how to program with CUDA.

• NVIDIA GPUs story
NVIDIA GPUs story. | by Ehsan Yousefzadeh-Asl-Miandoab | Medium

• Parallel Computing with GPUs
ehsanyousefzadehasl/PCwGPGPUs: Parallel Computing with GPGPUs
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https://medium.com/computing-systems-and-hardware-for-emerging/nvidia-gpus-story-0c7f86afa9a8
https://github.com/ehsanyousefzadehasl/PCwGPGPUs
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FPGAs: Field Programmable Gate Array
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https://www.xilinx.com/products/boards-and-kits/ek-a7-ac701-g.html
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FPGAs Big Players
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Integration with CPUs
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Integration with CPUs

44https://www.amd.com/en/products/adaptive-socs-and-fpgas/versal.html
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Applications of FPGAs
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• Initial Applications: Early on, FPGAs were mainly used in telecommunications, signal 
processing, and embedded systems where custom digital logic was required but dedicated 
ASICs weren’t economical.

• Modern Applications: 
• Data Centers: For accelerating tasks like AI inference, data processing, and high-speed networking.

• 5G and Telecommunications: For signal processing, packet processing, and handling data transfer in base 
stations.

• Automotive: Used in advanced driver-assistance systems (ADAS) and autonomous vehicle applications, 
where reconfigurability allows for updates as new features are developed.

• Financial Services: In high-frequency trading, where FPGAs can execute complex algorithms with extremely 
low latency.

• Aerospace and Defense: For radar processing, encryption, and secure communications, where real-time 
processing and reliability are critical.



Current State and Modern Applications
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• State of FPGAs: FPGAs are now key components in data center and edge computing 
infrastructures, used for both prototyping and production systems. With continued 
investment from Intel and AMD, FPGAs are becoming more tightly integrated with CPUs and 
GPUs, enhancing performance for a wider range of applications (Heterogenous Computing).

• Modern Applications: FPGAs are focusing on accelerating complex, compute-heavy tasks in 
areas such as:
• Machine Learning and AI: FPGA-based AI inference accelerators are growing in popularity due to their low latency and 

ability to be reconfigured for different models or algorithms.

• Real-Time Data Processing: FPGAs are ideal for tasks that require real-time, high-throughput processing, such as video 
streaming, IoT data analysis, and sensor data processing.

• Cybersecurity: FPGAs can be used for encryption, decryption, and secure processing, particularly in industries that 
require high security and flexibility.

• Cloud Computing: FPGAs are now available as part of cloud platforms like AWS (with F1 instances) and Microsoft Azure, 
providing hardware acceleration for users without needing physical access to an FPGA device.



Inside an FPGA

47https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/

Configurable
Switch Matrix (SM)

(CLB)

https://www.logic-fruit.com/blog/fpga/fpga-design-architecture-and-applications/


Inside an FPGA

• Configurable Logic Block (CLBs): Processing Units of an FPGA
• Can be configured to perform 

• Basic logic functions like AND, OR, NOT, XOR

• More complex combinational and sequential logic

• Inside CLBs:
• Look-Up Tables (LUTs)

• Flip-Flops (FFs)
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LUT 
(Combinational 
Logic Function) Flip Flop
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Inside an LUT

50https://fpgatek.com/what-is-an-fpga/

https://fpgatek.com/what-is-an-fpga/
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Kastner, Ryan & Jung, Chair & Cho, Uk & Rao, Bhaskar 

& Sherwood, Timothy & Swanson, Steven & Tullsen, 

Dean. GUSTO: General architecture design Utility 

and Synthesis Tool for Optimization. 
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Process of programming an FPGA
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Low Level programming with Verilog
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Switch Level

GATE Level

Register Transfer Level (RTL)

Behavioral Level

`timescale 1ns/100ps
module four_bit_adder(sum, c_out, a, b, c_in);

output [3:0] sum;
output c_out;
input [3:0] a, b;
input c_in;

assign {c_out, sum} = a + b + c_in;
endmodule



Verilog Example
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A Digital System
(Our Design)

A Digital System
(Our Design)

Input Signals

Testbench
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`timescale 1ns/100ps
module counter(count, clk, reset, enable);

input clk, reset, enable;
output [3:0] count;
reg [3:0] count;
always @(posedge clk) begin

if(reset == 1'b1) begin
count <= 0;

end else if(enable == 1'b1) begin
count <= count + 1;

end
end

endmodule

Design: a 4-bit counter
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`timescale 1ns/100ps
module counter_tb();

reg CLK, RESET, ENABLE;
wire [3:0] OUTPUT;
// instantiating from counter module
counter C0(.count(OUTPUT), .clk(CLK), .reset(RESET), .enable(ENABLE));
initial begin

CLK = 0; RESET = 1; ENABLE = 0;
#10 RESET = 0; // 10 nanoseconds delay
#5 ENABLE = 1;

end
always

#5 CLK = !CLK;
endmodule

Testbench
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High Level Synthesis (HSL), MM example
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Accelerator

• Accelerator accelerates (compared to CPU)!

• Accelerator is a flexible term
• AI Accelerator: chips like TPUs and Cerebras

• General Purpose Accelerators like GPUs

• Customn Accelerator like ASICs or FPGAs configured for a specific application
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63https://cerebras.ai/blog/cerebras-architecture-deep-dive-first-look-inside-the-hw/sw-co-design-for-deep-learning

https://cerebras.ai/blog/cerebras-architecture-deep-dive-first-look-inside-the-hw/sw-co-design-for-deep-learning


Reading and Learning Loop!
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Cerebras Wafer-Scale Engine (WSE)
• Cerebras WSE is an entire silicon wafer used as a single massive chip

• The large surface area enables an extensive number of processing cores, memory, and 
interconnections in a single chip, reducing the need for multiple, smaller chips 
communicating across a board.

• The WSE includes over 40 GB of on-chip SRAM memory spread across the wafer. This 
proximity to the processing cores provides high bandwidth and low latency memory 
access. This eliminates the need for external memory modules, reducing delays and 
energy consumption associated with off-chip data transfer, which is a common 
bottleneck in traditional AI accelerators.

• Cerebras uses a high-speed, low-latency interconnect fabric that connects all cores 
on the chip, enabling efficient data flow across the entire wafer.

• Optimization for AI Workloads:
• The Cerebras WSE is specifically optimized for deep learning and AI workloads, handling large 

matrix multiplications and tensor operations at a scale that traditional chips struggle with.
• The architecture allows for model parallelism, where different parts of a neural network can run 

concurrently, making it highly efficient for training and inference tasks on large models. 65



Google Tensor Processing Unit (TPU)
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Scalability with TPU pods!
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How Systolic Arrays work!
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High Bandwidth Memory (HBM)
• High Bandwidth Memory (HBM) is an advanced type of memory technology designed to provide 

faster data transfer rates and higher memory bandwidth than traditional memory types, such as DDR 
(Double Data Rate) memory. HBM achieves this efficiency through a unique design where memory 
chips are stacked vertically and connected using a technology called through-silicon vias (TSVs). This 
stacking allows multiple layers of memory to be connected closely, enabling data to travel shorter 
distances compared to traditional memory layouts.

• HBM’s vertical stacking also places it much closer to the processor, typically on the same package or 
die. This proximity reduces latency—the delay before data transfer begins—and significantly 
increases bandwidth, or the rate at which data can move between memory and the processor. HBM 
can handle massive amounts of data simultaneously, making it especially beneficial for high-
performance computing tasks like AI, deep learning, and graphics rendering, where large datasets 
need to be processed quickly.

• The efficiency of HBM comes not only from its high bandwidth but also from its power efficiency. By 
keeping memory closer to the processor and enabling faster data access, HBM reduces the energy 
needed to transfer data, resulting in lower overall power consumption. This combination of high 
bandwidth, low latency, and energy efficiency makes HBM an ideal choice for modern accelerators, 
such as GPUs and TPUs, where fast, efficient memory access is crucial for performance.
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HBM
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Tradeoff!
Processor Programmability Goal Flexibility

(Different 
Programs)

Promised 
Performance

CPU Easy (use any programming 
language you know)

Latency 
Oriented

Super High Fair

GPU Medium (learning CUDA!) Throughput 
Oriented

High Medium

FPGA Hard (Learn Verilog + Digital 
electronics basics)

Both Low High

Accelerator Very Hard (read docs and learn 
concepts of the filed like AI)

Both Super Low Super High



Explore and Discover!
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CUDA C++ Programming Guide (nvidia.com)
CUDA Toolkit - Free Tools and Training | NVIDIA Developer

NVIDIA Blog
Deep Learning Institute and Training Solutions | NVIDIA

Intel Field Programmable Gate Arrays (FPGA) Technical Training | Intel
Product - Chip - Cerebras
Products | Coral
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/cuda-toolkit
https://blogs.nvidia.com/
https://www.nvidia.com/en-us/training/
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/overview.html
https://www.cerebras.net/product-chip/
https://coral.ai/products/
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.amd.com/en/solutions/data-center/insights.html
https://www.xilinx.com/products/silicon-devices/fpga.html
https://www.intel.com/content/www/us/en/products/details/processors/core.html
https://www.amd.com/en/processors
https://www.nvidia.com/en-us/data-center/dgx-platform/




Questions?
Thanks for your attention!



Backup in case anyone is curious!
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Modern CPUs

• They fetch and execute more than one instruction (a windows of instruction)

• Higher throughput

• Advanced Hardware Execution Mechanisms to execute faster

• Employ Cache Hierarchy to fill the Memory-Processor performance gap

• Temporal/ Spatial Locality

• They have several cores (parallel computing)

Hennessy and Patterson

Tomasulo Yale Patt



Cache Hierarchy

$L3 (Last Level Cache (LLC))

$L2 Data

$L1-Instruction $L1-Data

DRAM

CPU Core

Less Access latency

Less Storage Capacity

More Expensive per bit

Registers

More Data Locality
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Pipelining

• Basic Processor

Fetch

Decode

Operand 
Collect

Execute

Write 
Back

F D OC E WB F D OC E WB F D OC E WB

Instruction 1 Instruction 2 Instruction 3

1ns 1ns 2ns 1ns 2ns 1ns 1ns 2ns 1ns 2ns 1ns 1ns 2ns 1ns 2ns

Inst1 O11, O12

Inst2 O21, O22

Inst3 O31, O32

Overall Time of Executing three Instruction: 3 * (1ns + 1ns + 2ns + 1ns + 2ns) = 3 * 7ns = 21ns
79



Pipelining
• Pipelined Basic Processor

F D OC E WB

Instruction 1

2ns 2ns 2ns 2ns 2ns

Inst1 O11, O12

Inst2 O21, O22

Inst3 O31, O32

F D OC E WB

2ns 2ns 2ns 2ns 2ns

Instruction 2

F D OC E WB

2ns 2ns 2ns 2ns 2ns

Instruction 3

Overall Time of Executing three Instruction: 

= (2ns + 2ns + 2ns + 2ns + 2ns) + 2ns + 2ns
= 10ns + 2ns + 2ns = 14ns

Implicit Parallelism
Instruction-Level Parallelism (ILP)

80

Fetch

Decode

Operand 
Collect

Execute

Write 
Back
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