Overprovisioning GPUs in the age of Al

Ehsan Yousefzadeh-Asl-Miandoab Advanced Data Systems November 2022

Content

- Machine Learning and Deep Learning
- GPUs as the Primary Deep Learning Accelerators
- GPUs' Underutilization Challenge
- Provisioning GPUs
- Naive, MPS, MIG Provisioning options
- Experiments, Evaluations, and Results

Machine Learning and Deep Learning

- Machine Learning is a new programming paradigm.
- Instead of specifying deterministic rules in programs, the program finds patterns in data.
- Data is the primary element in Machine Learning.

https://dockship.io/articles/60a9e411bc77f4429e9ddf0d/introduction-with-machine-learning

Artificial Intelligence

The theory and development of computer systems able to perform tasks normally requiring human intelligence

Machine Learning

Gives computers "the ability to learn without being explicitly programmed"

Deep Learning

Machine learning algorithms with brain-like logical structure of algorithms called artificial neural networks

LEVITY

https://levity.ai/blog/difference-machine-learning-deep-learning

Training is accomplished by changing Weights, biases

Fully Connected (FC) Neural Network

https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc

Training and Inference

https://www.researchgate.net/figure/Overview-of-training-and-inference-in-deep-learning_fig1_330842645

Quiz! (True or False?)

- 1. Machine learning is exactly telling computers what to do.
- 2. Complex Deep Learning is helpful when we have a large amount of data.
- 3. Al is a subsection of Deep Learning.
- 4. Training is computationally lighter than inference.

GPUs, Primary Accelerators

https://www.pcworld.com/article/416006/the-best-graphics-cards-for-pc-gaming.html

https://www.tomshardware.com/news/nvidia-hopper-h100-sxm5-pictured

CPU Multiple Cores

GPU Thousands of Cores

https://www.cherryservers.com/blog/gpu-vs-cpu-what-are-the-key-differences

SISD: Single Instruction Single Data

SIMD: Single Instruction Multiple Data

SIMT: Single Instruction Multiple Thread

Kyung, Gyutaek et al. "An implementation of a SIMT architecture-based stream processor." TENCON 2014 - 2014 IEEE Region 10 Conference (2014): 1-5.

Quiz! (True or False?)

- 1. CPUs offer less parallelism compared to GPUs.
- 2. GPUs always execute faster than CPUs.
- 3. GPUs are the best choice for Deep Learning training.
- 4. GPUs are primary processors because of cost, programmability, performance tradeoff they offer.

Underutilization Challenge of GPUs in DL Training

GPU Utilization

GPU Util =
$$3 * \frac{T}{12T} = \frac{T}{4T} = 25\%$$

Deep Learning Models

Yeung, Gingfung, et al. "Towards GPU utilization prediction for cloud deep learning." 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20). 2020.

GPU Provisioning

GPU Over-provisioning as the mainstream solution

Naïve, MPS, MIG

Naïve or GPU streams

Multi-Process Service (MPS)

Multi-Instance GPU (MIG)

https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

Experiments

4X NVIDIA A100 TENSOR CORE GPUs

160 or 320 gigabytes (GB) total GPU memory. Fully interconnected with high-bandwidth, third-generation NVIDIA® NVLink® at 200 GB/s

7.68 TERABYTE (TB) PCIE GEN4 NVME SOLID-STATE DRIVE (SSD)

Delivers 1.4M IOPS storage performance, 2X faster than PCIe Gen3 NVMe SSDs

REFRIGERANT COOLING

Whisper quiet, a perfect solution for your desk while stil being optimized for performance

64-CORE AMD CPU AND PCIE GEN4

3.2X more cores to power multiple users and the most intensive AI jobs, 512GB system memory

NVIDIA DGX™ DISPLAY ADAPTER

4x Mini DisplayPort, 4K resolution

REMOTE MANAGEMENT

Integrated 1Gbase-T Ethernet baseboard management controller (BMC) port

Experiments

Model	Small	Medium	Large
ResNet	ResNet26 + Cifar10	ResNet50 + ImageNet64x64	Resnet152 + ImageNet
EfficientNet	EfficientNet_S + Cifar10	EfficientNet_S + ImageNet64x64	EfficientNet_S + ImageNet
Cait	x	x	Cait_XXS_24 + ImageNet

Hyperparameter	Value
Batch Size	128, 32 (only resnet)

Small Model

Resnet26 + Cifar10

Execution Time or Performance

Resource Contention Stream << MPS < MIG

Medium Model

Resnet50 + ImageNet64x64

Execution Time or Performance

Large Model

Resnet152 + ImageNet

Execution Time or Performance

MIG Resources are not enough.

Small Model

GPU Utilization

Resnet26 + Cifar10

Medium Model

Resnet50 + ImageNet64x64

1 GPU Utilization (%) 0 2x naïve 7g.40gb 3x naïve 3x mps 7x naïve naïve sdu 4g.20gb 2x mps 7x mps 2x 3g.20gb 3x 2g.10gb 7x 1g.5gb

GPU Utilization

GPU Utilization

Large Model

Resnet152 + ImageNet

Conclusion

- 1. Deep Learning offers acceptable solutions to a variety of application
- 2. Deep Learning training is compute/memory hungry.
- 3. GPUs are the main accelerators for these applications.
- 4. GPUs suffer from underutilization in the age of AI.
- 5. Overprovisioning GPUs as a solution
- 6. Available workload collocation options: Naïve, MPS, MIG
- 7. In terms of interference: Naïve < MPS < MIG
- 8. Intelligent collocation offers energy and performance efficiency